

Secteur des Sciences et Technologies

Invitation à la soutenance publique de thèse de Monsieur Alexander GALSTYAN Specialist in Physics

Pour l'obtention du grade de Docteur en sciences

« Mathematical modelling of laser matter interaction within the single active electron approximation»

qui se déroulera le mercredi 26 septembre 2018 à 15h00 Auditoire SUD 17 Place Croix du Sud 1348 Louvain-la-Neuve

Membres du jury :

Prof. Bernard Piraux (UCL), supervisor Prof. Yuri Popov (Lomonosov Moscow State University, Russia), supervisor Prof. Bernard Nysten (UCL), chairperson Prof. Clément Lauzin (UCL), secretary Prof. Patrick O'Mahony (Royal Holloway, UK) Prof. Piero Decleva (Universita di Trieste, Italy) Prof. Xavier Urbain (UCL) Prof. Jean-Christophe Charlier (UCL)

Université catholique de Louvain

Due to the difficulties in treating the electron-electron correlations and the interaction of these electrons with the Coulomb and the laser fields, the theoretical description of the interaction of multielectron atoms and molecules with a strong laser field is currently limited to simple models. The most popular modelling framework in this field is the strong field approximation (SFA). The main assumption behind it is that the electron does not feel the laser field while it is bound, and does not feel the Coulomb field after it has been ejected. However, SFA has several drawbacks: SFA wave packets are not gauge invariant, SFA perturbation series are not always convergent, and we can extract only a very limited amount of quantitative information from the wave packet since it cannot be normalised. In this thesis, we consider a few models, based on the philosophy of the SFA, but improving it in several aspects. The reformulated SFA resolves the gauge and normalisation problems and allows one to study the full wave packet of the quantum system. Perturbation series based on a Faddeev-like formalism coincide with the reformulated SFA in the first order, but converge much better for a range of field frequencies. Finally, the separate potentials for atoms and molecules (SPAM) model allows one to study, in a systematic way, the contribution of the different single active electron states to the overall dynamics of the system. For the sake of illustration, we have applied the SPAM model to the treatment of the interaction of atomic and molecular hydrogen, the hydrogen anion, and the water molecule with an ultrashort intense electromagnetic pulse.